Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Shared Memory Parallel Subgraph Enumeration (1705.09358v1)

Published 25 May 2017 in cs.DC and cs.DS

Abstract: The subgraph enumeration problem asks us to find all subgraphs of a target graph that are isomorphic to a given pattern graph. Determining whether even one such isomorphic subgraph exists is NP-complete---and therefore finding all such subgraphs (if they exist) is a time-consuming task. Subgraph enumeration has applications in many fields, including biochemistry and social networks, and interestingly the fastest algorithms for solving the problem for biochemical inputs are sequential. Since they depend on depth-first tree traversal, an efficient parallelization is far from trivial. Nevertheless, since important applications produce data sets with increasing difficulty, parallelism seems beneficial. We thus present here a shared-memory parallelization of the state-of-the-art subgraph enumeration algorithms RI and RI-DS (a variant of RI for dense graphs) by Bonnici et al. [BMC Bioinformatics, 2013]. Our strategy uses work stealing and our implementation demonstrates a significant speedup on real-world biochemical data---despite a highly irregular data access pattern. We also improve RI-DS by pruning the search space better; this further improves the empirical running times compared to the already highly tuned RI-DS.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.