Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Representing the suffix tree with the CDAWG (1705.08640v1)

Published 24 May 2017 in cs.DS

Abstract: Given a string $T$, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with $e_T$ arcs, taking overall $O(e_T+e_{{\overline{T}}})$ words of space, where ${\overline{T}}$ is the reverse of $T$, and supporting some key operations in time between $O(1)$ and $O(\log{\log{n}})$ in the worst case. This representation is especially appealing for highly repetitive strings, like collections of similar genomes or of version-controlled documents, in which $e_T$ grows sublinearly in the length of $T$ in practice. In this paper we augment such representation, supporting a number of additional queries in worst-case time between $O(1)$ and $O(\log{n})$ in the RAM model, without increasing space complexity asymptotically. Our technique, based on a heavy path decomposition of the suffix tree, enables also a representation of the suffix array, of the inverse suffix array, and of $T$ itself, that takes $O(e_T)$ words of space, and that supports random access in $O(\log{n})$ time. Furthermore, we establish a connection between the reversed CDAWG of $T$ and a context-free grammar that produces $T$ and only $T$, which might have independent interest.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.