Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sequence Summarization Using Order-constrained Kernelized Feature Subspaces (1705.08583v1)

Published 24 May 2017 in cs.CV

Abstract: Representations that can compactly and effectively capture temporal evolution of semantic content are important to machine learning algorithms that operate on multi-variate time-series data. We investigate such representations motivated by the task of human action recognition. Here each data instance is encoded by a multivariate feature (such as via a deep CNN) where action dynamics are characterized by their variations in time. As these features are often non-linear, we propose a novel pooling method, kernelized rank pooling, that represents a given sequence compactly as the pre-image of the parameters of a hyperplane in an RKHS, projections of data onto which captures their temporal order. We develop this idea further and show that such a pooling scheme can be cast as an order-constrained kernelized PCA objective; we then propose to use the parameters of a kernelized low-rank feature subspace as the representation of the sequences. We cast our formulation as an optimization problem on generalized Grassmann manifolds and then solve it efficiently using Riemannian optimization techniques. We present experiments on several action recognition datasets using diverse feature modalities and demonstrate state-of-the-art results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.