Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Music Playlist Continuation by Learning from Hand-Curated Examples and Song Features: Alleviating the Cold-Start Problem for Rare and Out-of-Set Songs (1705.08283v3)

Published 23 May 2017 in cs.IR

Abstract: Automated music playlist generation is a specific form of music recommendation. Generally stated, the user receives a set of song suggestions defining a coherent listening session. We hypothesize that the best way to convey such playlist coherence to new recommendations is by learning it from actual curated examples, in contrast to imposing ad hoc constraints. Collaborative filtering methods can be used to capture underlying patterns in hand-curated playlists. However, the scarcity of thoroughly curated playlists and the bias towards popular songs result in the vast majority of songs occurring in very few playlists and thus being poorly recommended. To overcome this issue, we propose an alternative model based on a song-to-playlist classifier, which learns the underlying structure from actual playlists while leveraging song features derived from audio, social tags and independent listening logs. Experiments on two datasets of hand-curated playlists show competitive performance compared to collaborative filtering when sufficient training data is available and more robust performance when recommending rare and out-of-set songs. For example, both approaches achieve a recall@100 of roughly 35% for songs occurring in 5 or more training playists, whereas the proposed model achieves a recall@100 of roughly 15% for songs occurring in 4 or less training playlists, compared to the 3% achieved by collaborative filtering.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.