Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Algorithms and hardness results for happy coloring problems (1705.08282v1)

Published 23 May 2017 in cs.DS and cs.CC

Abstract: In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a vertex is happy if all its incident edges are happy. Motivated by the computation of homophily in social networks, we consider the algorithmic aspects of the following Maximum Happy Edges (k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring of G maximizing the number of happy edges. When we want to maximize the number of happy vertices, the problem is known as Maximum Happy Vertices (k-MHV). We further study the complexity of the problems and their weighted variants. For instance, we prove that for every k >= 3, both problems are NP-complete for bipartite graphs and k-MHV remains hard for split graphs. In terms of exact algorithms, we show both problems can be solved in time O*(2n), and give an even faster O*(1.89n)-time algorithm when k = 3. From a parameterized perspective, we give a linear vertex kernel for Weighted k-MHE, where edges are weighted and the goal is to obtain happy edges of at least a specified total weight. Finally, we prove both problems are solvable in polynomial-time when the graph has bounded treewidth or bounded neighborhood diversity.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.