Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ambiguity set and learning via Bregman and Wasserstein (1705.08056v1)

Published 23 May 2017 in stat.ML and cs.LG

Abstract: Construction of ambiguity set in robust optimization relies on the choice of divergences between probability distributions. In distribution learning, choosing appropriate probability distributions based on observed data is critical for approximating the true distribution. To improve the performance of machine learning models, there has recently been interest in designing objective functions based on Lp-Wasserstein distance rather than the classical Kullback-Leibler (KL) divergence. In this paper, we derive concentration and asymptotic results using Bregman divergence. We propose a novel asymmetric statistical divergence called Wasserstein-Bregman divergence as a generalization of L2-Wasserstein distance. We discuss how these results can be applied to the construction of ambiguity set in robust optimization.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.