Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SVM via Saddle Point Optimization: New Bounds and Distributed Algorithms (1705.07252v4)

Published 20 May 2017 in cs.LG and cs.NA

Abstract: We study two important SVM variants: hard-margin SVM (for linearly separable cases) and $\nu$-SVM (for linearly non-separable cases). We propose new algorithms from the perspective of saddle point optimization. Our algorithms achieve $(1-\epsilon)$-approximations with running time $\tilde{O}(nd+n\sqrt{d / \epsilon})$ for both variants, where $n$ is the number of points and $d$ is the dimensionality. To the best of our knowledge, the current best algorithm for $\nu$-SVM is based on quadratic programming approach which requires $\Omega(n2 d)$ time in worst case~\cite{joachims1998making,platt199912}. In the paper, we provide the first nearly linear time algorithm for $\nu$-SVM. The current best algorithm for hard margin SVM achieved by Gilbert algorithm~\cite{gartner2009coresets} requires $O(nd / \epsilon )$ time. Our algorithm improves the running time by a factor of $\sqrt{d}/\sqrt{\epsilon}$. Moreover, our algorithms can be implemented in the distributed settings naturally. We prove that our algorithms require $\tilde{O}(k(d +\sqrt{d/\epsilon}))$ communication cost, where $k$ is the number of clients, which almost matches the theoretical lower bound. Numerical experiments support our theory and show that our algorithms converge faster on high dimensional, large and dense data sets, as compared to previous methods.

Summary

We haven't generated a summary for this paper yet.