Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Clustering under Local Stability: Bridging the Gap between Worst-Case and Beyond Worst-Case Analysis (1705.07157v1)

Published 19 May 2017 in cs.DS and cs.LG

Abstract: Recently, there has been substantial interest in clustering research that takes a beyond worst-case approach to the analysis of algorithms. The typical idea is to design a clustering algorithm that outputs a near-optimal solution, provided the data satisfy a natural stability notion. For example, Bilu and Linial (2010) and Awasthi et al. (2012) presented algorithms that output near-optimal solutions, assuming the optimal solution is preserved under small perturbations to the input distances. A drawback to this approach is that the algorithms are often explicitly built according to the stability assumption and give no guarantees in the worst case; indeed, several recent algorithms output arbitrarily bad solutions even when just a small section of the data does not satisfy the given stability notion. In this work, we address this concern in two ways. First, we provide algorithms that inherit the worst-case guarantees of clustering approximation algorithms, while simultaneously guaranteeing near-optimal solutions when the data is stable. Our algorithms are natural modifications to existing state-of-the-art approximation algorithms. Second, we initiate the study of local stability, which is a property of a single optimal cluster rather than an entire optimal solution. We show our algorithms output all optimal clusters which satisfy stability locally. Specifically, we achieve strong positive results in our local framework under recent stability notions including metric perturbation resilience (Angelidakis et al. 2017) and robust perturbation resilience (Balcan and Liang 2012) for the $k$-median, $k$-means, and symmetric/asymmetric $k$-center objectives.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.