Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Clustering under Local Stability: Bridging the Gap between Worst-Case and Beyond Worst-Case Analysis (1705.07157v1)

Published 19 May 2017 in cs.DS and cs.LG

Abstract: Recently, there has been substantial interest in clustering research that takes a beyond worst-case approach to the analysis of algorithms. The typical idea is to design a clustering algorithm that outputs a near-optimal solution, provided the data satisfy a natural stability notion. For example, Bilu and Linial (2010) and Awasthi et al. (2012) presented algorithms that output near-optimal solutions, assuming the optimal solution is preserved under small perturbations to the input distances. A drawback to this approach is that the algorithms are often explicitly built according to the stability assumption and give no guarantees in the worst case; indeed, several recent algorithms output arbitrarily bad solutions even when just a small section of the data does not satisfy the given stability notion. In this work, we address this concern in two ways. First, we provide algorithms that inherit the worst-case guarantees of clustering approximation algorithms, while simultaneously guaranteeing near-optimal solutions when the data is stable. Our algorithms are natural modifications to existing state-of-the-art approximation algorithms. Second, we initiate the study of local stability, which is a property of a single optimal cluster rather than an entire optimal solution. We show our algorithms output all optimal clusters which satisfy stability locally. Specifically, we achieve strong positive results in our local framework under recent stability notions including metric perturbation resilience (Angelidakis et al. 2017) and robust perturbation resilience (Balcan and Liang 2012) for the $k$-median, $k$-means, and symmetric/asymmetric $k$-center objectives.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube