Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Streaming Sparse Gaussian Process Approximations (1705.07131v2)

Published 19 May 2017 in stat.ML

Abstract: Sparse pseudo-point approximations for Gaussian process (GP) models provide a suite of methods that support deployment of GPs in the large data regime and enable analytic intractabilities to be sidestepped. However, the field lacks a principled method to handle streaming data in which both the posterior distribution over function values and the hyperparameter estimates are updated in an online fashion. The small number of existing approaches either use suboptimal hand-crafted heuristics for hyperparameter learning, or suffer from catastrophic forgetting or slow updating when new data arrive. This paper develops a new principled framework for deploying Gaussian process probabilistic models in the streaming setting, providing methods for learning hyperparameters and optimising pseudo-input locations. The proposed framework is assessed using synthetic and real-world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Thang D. Bui (14 papers)
  2. Cuong V. Nguyen (25 papers)
  3. Richard E. Turner (112 papers)
Citations (97)

Summary

We haven't generated a summary for this paper yet.