Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized linear models with low rank effects for network data (1705.06772v1)

Published 18 May 2017 in stat.ME and stat.ML

Abstract: Networks are a useful representation for data on connections between units of interests, but the observed connections are often noisy and/or include missing values. One common approach to network analysis is to treat the network as a realization from a random graph model, and estimate the underlying edge probability matrix, which is sometimes referred to as network denoising. Here we propose a generalized linear model with low rank effects to model network edges. This model can be applied to various types of networks, including directed and undirected, binary and weighted, and it can naturally utilize additional information such as node and/or edge covariates. We develop an efficient projected gradient ascent algorithm to fit the model, establish asymptotic consistency, and demonstrate empirical performance of the method on both simulated and real networks.

Citations (15)

Summary

We haven't generated a summary for this paper yet.