Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generalized linear models with low rank effects for network data (1705.06772v1)

Published 18 May 2017 in stat.ME and stat.ML

Abstract: Networks are a useful representation for data on connections between units of interests, but the observed connections are often noisy and/or include missing values. One common approach to network analysis is to treat the network as a realization from a random graph model, and estimate the underlying edge probability matrix, which is sometimes referred to as network denoising. Here we propose a generalized linear model with low rank effects to model network edges. This model can be applied to various types of networks, including directed and undirected, binary and weighted, and it can naturally utilize additional information such as node and/or edge covariates. We develop an efficient projected gradient ascent algorithm to fit the model, establish asymptotic consistency, and demonstrate empirical performance of the method on both simulated and real networks.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.