Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Sample-Efficient Algorithms for Recovering Structured Signals from Magnitude-Only Measurements (1705.06412v2)

Published 18 May 2017 in stat.ML and cs.LG

Abstract: We consider the problem of recovering a signal $\mathbf{x}* \in \mathbf{R}n$, from magnitude-only measurements $y_i = |\left\langle\mathbf{a}_i,\mathbf{x}*\right\rangle|$ for $i=[m]$. Also called the phase retrieval, this is a fundamental challenge in bio-,astronomical imaging and speech processing. The problem above is ill-posed; additional assumptions on the signal and/or the measurements are necessary. In this paper we first study the case where the signal $\mathbf{x}*$ is $s$-sparse. We develop a novel algorithm that we call Compressive Phase Retrieval with Alternating Minimization, or CoPRAM. Our algorithm is simple; it combines the classical alternating minimization approach for phase retrieval with the CoSaMP algorithm for sparse recovery. Despite its simplicity, we prove that CoPRAM achieves a sample complexity of $O(s2\log n)$ with Gaussian measurements $\mathbf{a}_i$, matching the best known existing results; moreover, it demonstrates linear convergence in theory and practice. Additionally, it requires no extra tuning parameters other than signal sparsity $s$ and is robust to noise. When the sorted coefficients of the sparse signal exhibit a power law decay, we show that CoPRAM achieves a sample complexity of $O(s\log n)$, which is close to the information-theoretic limit. We also consider the case where the signal $\mathbf{x}*$ arises from structured sparsity models. We specifically examine the case of block-sparse signals with uniform block size of $b$ and block sparsity $k=s/b$. For this problem, we design a recovery algorithm Block CoPRAM that further reduces the sample complexity to $O(ks\log n)$. For sufficiently large block lengths of $b=\Theta(s)$, this bound equates to $O(s\log n)$. To our knowledge, this constitutes the first end-to-end algorithm for phase retrieval where the Gaussian sample complexity has a sub-quadratic dependence on the signal sparsity level.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.