Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Constrained Submodular Maximization via Greedy Local Search (1705.06319v3)

Published 17 May 2017 in cs.DS and cs.DM

Abstract: We present a simple combinatorial $\frac{1 -e{-2}}{2}$-approximation algorithm for maximizing a monotone submodular function subject to a knapsack and a matroid constraint. This classic problem is known to be hard to approximate within factor better than $1 - 1/e$. We show that the algorithm can be extended to yield a ratio of $\frac{1 - e{-(k+1)}}{k+1}$ for the problem with a single knapsack and the intersection of $k$ matroid constraints, for any fixed $k > 1$. Our algorithms, which combine the greedy algorithm of [Khuller, Moss and Naor, 1999] and [Sviridenko, 2004] with local search, show the power of this natural framework in submodular maximization with combined constraints.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.