Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Range-Clustering Queries (1705.06242v1)

Published 17 May 2017 in cs.CG

Abstract: In a geometric $k$-clustering problem the goal is to partition a set of points in $\mathbb{R}d$ into $k$ subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set $S$: given a query box $Q$ and an integer $k>2$, compute an optimal $k$-clustering for $S\setminus Q$. We obtain the following results. We present a general method to compute a $(1+\epsilon)$-approximation to a range-clustering query, where $\epsilon>0$ is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including $k$-center clustering in any $L_p$-metric and a variant of $k$-center clustering where the goal is to minimize the sum (instead of maximum) of the cluster sizes. We extend our method to deal with capacitated $k$-clustering problems, where each of the clusters should not contain more than a given number of points. For the special cases of rectilinear $k$-center clustering in $\mathbb{R}1$, and in $\mathbb{R}2$ for $k=2$ or 3, we present data structures that answer range-clustering queries exactly.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.