Papers
Topics
Authors
Recent
2000 character limit reached

Range-Clustering Queries (1705.06242v1)

Published 17 May 2017 in cs.CG

Abstract: In a geometric $k$-clustering problem the goal is to partition a set of points in $\mathbb{R}d$ into $k$ subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set $S$: given a query box $Q$ and an integer $k>2$, compute an optimal $k$-clustering for $S\setminus Q$. We obtain the following results. We present a general method to compute a $(1+\epsilon)$-approximation to a range-clustering query, where $\epsilon>0$ is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including $k$-center clustering in any $L_p$-metric and a variant of $k$-center clustering where the goal is to minimize the sum (instead of maximum) of the cluster sizes. We extend our method to deal with capacitated $k$-clustering problems, where each of the clusters should not contain more than a given number of points. For the special cases of rectilinear $k$-center clustering in $\mathbb{R}1$, and in $\mathbb{R}2$ for $k=2$ or 3, we present data structures that answer range-clustering queries exactly.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.