Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stochastic Functional Gradient Path Planning in Occupancy Maps (1705.05987v1)

Published 17 May 2017 in cs.RO

Abstract: Planning safe paths is a major building block in robot autonomy. It has been an active field of research for several decades, with a plethora of planning methods. Planners can be generally categorised as either trajectory optimisers or sampling-based planners. The latter is the predominant planning paradigm for occupancy maps. Trajectory optimisation entails major algorithmic changes to tackle contextual information gaps caused by incomplete sensor coverage of the map. However, the benefits are substantial, as trajectory optimisers can reason on the trade-off between path safety and efficiency. In this work, we improve our previous work on stochastic functional gradient planners. We introduce a novel expressive path representation based on kernel approximation, that allows cost effective model updates based on stochastic samples. The main drawback of the previous stochastic functional gradient planner was the cubic cost, stemming from its non-parametric path representation. Our novel approximate kernel based model, on the other hand, has a fixed linear cost that depends solely on the number of features used to represent the path. We show that the stochasticity of the samples is crucial for the planner and present comparisons to other state-of-the-art planning methods in both simulation and with real occupancy data. The experiments demonstrate the advantages of the stochastic approximate kernel method for path planning in occupancy maps.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube