Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Functional Gradient Path Planning in Occupancy Maps (1705.05987v1)

Published 17 May 2017 in cs.RO

Abstract: Planning safe paths is a major building block in robot autonomy. It has been an active field of research for several decades, with a plethora of planning methods. Planners can be generally categorised as either trajectory optimisers or sampling-based planners. The latter is the predominant planning paradigm for occupancy maps. Trajectory optimisation entails major algorithmic changes to tackle contextual information gaps caused by incomplete sensor coverage of the map. However, the benefits are substantial, as trajectory optimisers can reason on the trade-off between path safety and efficiency. In this work, we improve our previous work on stochastic functional gradient planners. We introduce a novel expressive path representation based on kernel approximation, that allows cost effective model updates based on stochastic samples. The main drawback of the previous stochastic functional gradient planner was the cubic cost, stemming from its non-parametric path representation. Our novel approximate kernel based model, on the other hand, has a fixed linear cost that depends solely on the number of features used to represent the path. We show that the stochasticity of the samples is crucial for the planner and present comparisons to other state-of-the-art planning methods in both simulation and with real occupancy data. The experiments demonstrate the advantages of the stochastic approximate kernel method for path planning in occupancy maps.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.