Papers
Topics
Authors
Recent
Search
2000 character limit reached

Super-resolution channel estimation for mmWave massive MIMO with hybrid precoding

Published 16 May 2017 in cs.IT and math.IT | (1705.05649v2)

Abstract: Channel estimation is challenging for millimeter-wave (mmWave) massive MIMO with hybrid precoding, since the number of radio frequency (RF) chains is much smaller than that of antennas. Conventional compressive sensing based channel estimation schemes suffer from severe resolution loss due to the channel angle quantization. To improve the channel estimation accuracy, we propose an iterative reweight (IR)-based super-resolution channel estimation scheme in this paper. By optimizing an objective function through the gradient descent method, the proposed scheme can iteratively move the estimated angle of arrivals/departures (AoAs/AoDs) towards the optimal solutions, and finally realize the super-resolution channel estimation. In the optimization, a weight parameter is used to control the tradeoff between the sparsity and the data fitting error. In addition, a singular value decomposition (SVD)-based preconditioning is developed to reduce the computational complexity of the proposed scheme. Simulation results verify the better performance of the proposed scheme than conventional solutions.

Citations (119)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.