Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Through a Gender Lens: Learning Usage Patterns of Emojis from Large-Scale Android Users (1705.05546v2)

Published 16 May 2017 in cs.HC

Abstract: Based on a large data set of emoji using behavior collected from smartphone users over the world, this paper investigates gender-specific usage of emojis. We present various interesting findings that evidence a considerable difference in emoji usage by female and male users. Such a difference is significant not just in a statistical sense; it is sufficient for a machine learning algorithm to accurately infer the gender of a user purely based on the emojis used in their messages. In real world scenarios where gender inference is a necessity, models based on emojis have unique advantages over existing models that are based on textual or contextual information. Emojis not only provide language-independent indicators, but also alleviate the risk of leaking private user information through the analysis of text and metadata.

Citations (116)

Summary

We haven't generated a summary for this paper yet.