Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Design of a Very Compact CNN Classifier for Online Handwritten Chinese Character Recognition Using DropWeight and Global Pooling (1705.05207v1)

Published 15 May 2017 in cs.CV

Abstract: Currently, owing to the ubiquity of mobile devices, online handwritten Chinese character recognition (HCCR) has become one of the suitable choice for feeding input to cell phones and tablet devices. Over the past few years, larger and deeper convolutional neural networks (CNNs) have extensively been employed for improving character recognition performance. However, its substantial storage requirement is a significant obstacle in deploying such networks into portable electronic devices. To circumvent this problem, we propose a novel technique called DropWeight for pruning redundant connections in the CNN architecture. It is revealed that the proposed method not only treats streamlined architectures such as AlexNet and VGGNet well but also exhibits remarkable performance for deep residual network and inception network. We also demonstrate that global pooling is a better choice for building very compact online HCCR systems. Experiments were performed on the ICDAR-2013 online HCCR competition dataset using our proposed network, and it is found that the proposed approach requires only 0.57 MB for storage, whereas state-of-the-art CNN-based methods require up to 135 MB; meanwhile the performance is decreased only by 0.91%.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube