Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Robust Frequent Directions with Application in Online Learning (1705.05067v3)

Published 15 May 2017 in cs.LG

Abstract: The frequent directions (FD) technique is a deterministic approach for online sketching that has many applications in machine learning. The conventional FD is a heuristic procedure that often outputs rank deficient matrices. To overcome the rank deficiency problem, we propose a new sketching strategy called robust frequent directions (RFD) by introducing a regularization term. RFD can be derived from an optimization problem. It updates the sketch matrix and the regularization term adaptively and jointly. RFD reduces the approximation error of FD without increasing the computational cost. We also apply RFD to online learning and propose an effective hyperparameter-free online Newton algorithm. We derive a regret bound for our online Newton algorithm based on RFD, which guarantees the robustness of the algorithm. The experimental studies demonstrate that the proposed method outperforms state-of-the-art second order online learning algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.