Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep neural networks on graph signals for brain imaging analysis (1705.04828v1)

Published 13 May 2017 in cs.CV

Abstract: Brain imaging data such as EEG or MEG are high-dimensional spatiotemporal data often degraded by complex, non-Gaussian noise. For reliable analysis of brain imaging data, it is important to extract discriminative, low-dimensional intrinsic representation of the recorded data. This work proposes a new method to learn the low-dimensional representations from the noise-degraded measurements. In particular, our work proposes a new deep neural network design that integrates graph information such as brain connectivity with fully-connected layers. Our work leverages efficient graph filter design using Chebyshev polynomial and recent work on convolutional nets on graph-structured data. Our approach exploits graph structure as the prior side information, localized graph filter for feature extraction and neural networks for high capacity learning. Experiments on real MEG datasets show that our approach can extract more discriminative representations, leading to improved accuracy in a supervised classification task.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.