Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimizing Locally Differentially Private Protocols (1705.04421v2)

Published 12 May 2017 in cs.CR

Abstract: Protocols satisfying Local Differential Privacy (LDP) enable parties to collect aggregate information about a population while protecting each user's privacy, without relying on a trusted third party. LDP protocols (such as Google's RAPPOR) have been deployed in real-world scenarios. In these protocols, a user encodes his private information and perturbs the encoded value locally before sending it to an aggregator, who combines values that users contribute to infer statistics about the population. In this paper, we introduce a framework that generalizes several LDP protocols proposed in the literature. Our framework yields a simple and fast aggregation algorithm, whose accuracy can be precisely analyzed. Our in-depth analysis enables us to choose optimal parameters, resulting in two new protocols (i.e., Optimized Unary Encoding and Optimized Local Hashing) that provide better utility than protocols previously proposed. We present precise conditions for when each proposed protocol should be used, and perform experiments that demonstrate the advantage of our proposed protocols.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.