Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Object-Level Context Modeling For Scene Classification with Context-CNN (1705.04358v2)

Published 11 May 2017 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) have been used extensively for computer vision tasks and produce rich feature representation for objects or parts of an image. But reasoning about scenes requires integration between the low-level feature representations and the high-level semantic information. We propose a deep network architecture which models the semantic context of scenes by capturing object-level information. We use Long Short Term Memory(LSTM) units in conjunction with object proposals to incorporate object-object relationship and object-scene relationship in an end-to-end trainable manner. We evaluate our model on the LSUN dataset and achieve results comparable to the state-of-art. We further show visualization of the learned features and analyze the model with experiments to verify our model's ability to model context.

Citations (10)

Summary

We haven't generated a summary for this paper yet.