Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotics of Nonlinear LSE Precoders with Applications to Transmit Antenna Selection (1705.04294v1)

Published 11 May 2017 in cs.IT and math.IT

Abstract: This paper studies the large-system performance of Least Square Error (LSE) precoders which~minimize~the~input-output distortion over an arbitrary support subject to a general penalty function. The asymptotics are determined via the replica method in a general form which encloses the Replica Symmetric (RS) and Replica Symmetry Breaking (RSB) ans\"atze. As a result, the "marginal decoupling property" of LSE precoders for $b$-steps of RSB is derived. The generality of the studied setup enables us to address special cases in which the number of active transmit antennas are constrained. Our numerical investigations depict that the computationally efficient forms of LSE precoders based on "$\ell_1$-norm" minimization perform close to the cases with "zero-norm" penalty function which have a considerable improvements compared to the random antenna selection. For the case with BPSK signals and restricted number of active antennas, the results show that RS fails to predict the performance while the RSB ansatz is consistent with theoretical bounds.

Citations (23)

Summary

We haven't generated a summary for this paper yet.