Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

End-to-end Recurrent Neural Network Models for Vietnamese Named Entity Recognition: Word-level vs. Character-level (1705.04044v3)

Published 11 May 2017 in cs.CL

Abstract: This paper demonstrates end-to-end neural network architectures for Vietnamese named entity recognition. Our best model is a combination of bidirectional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Network (CNN), Conditional Random Field (CRF), using pre-trained word embeddings as input, which achieves an F1 score of 88.59% on a standard test set. Our system is able to achieve a comparable performance to the first-rank system of the VLSP campaign without using any syntactic or hand-crafted features. We also give an extensive empirical study on using common deep learning models for Vietnamese NER, at both word and character level.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.