Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Duality Between Depth-Three Formulas and Approximation by Depth-Two (1705.03588v1)

Published 10 May 2017 in cs.CC

Abstract: We establish an explicit link between depth-3 formulas and one-sided approximation by depth-2 formulas, which were previously studied independently. Specifically, we show that the minimum size of depth-3 formulas is (up to a factor of n) equal to the inverse of the maximum, over all depth-2 formulas, of one-sided-error correlation bound divided by the size of the depth-2 formula, on a certain hard distribution. We apply this duality to obtain several consequences: 1. Any function f can be approximated by a CNF formula of size $O(\epsilon 2n / n)$ with one-sided error and advantage $\epsilon$ for some $\epsilon$, which is tight up to a constant factor. 2. There exists a monotone function f such that f can be approximated by some polynomial-size CNF formula, whereas any monotone CNF formula approximating f requires exponential size. 3. Any depth-3 formula computing the parity function requires $\Omega(2{2 \sqrt{n}})$ gates, which is tight up to a factor of $\sqrt n$. This establishes a quadratic separation between depth-3 circuit size and depth-3 formula size. 4. We give a characterization of the depth-3 monotone circuit complexity of the majority function, in terms of a natural extremal problem on hypergraphs. In particular, we show that a known extension of Turan's theorem gives a tight (up to a polynomial factor) circuit size for computing the majority function by a monotone depth-3 circuit with bottom fan-in 2. 5. AC0[p] has exponentially small one-sided correlation with the parity function for odd prime p.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Shuichi Hirahara (10 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.