Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Word and Phrase Translation with word2vec (1705.03127v4)

Published 9 May 2017 in cs.CL and cs.AI

Abstract: Word and phrase tables are key inputs to machine translations, but costly to produce. New unsupervised learning methods represent words and phrases in a high-dimensional vector space, and these monolingual embeddings have been shown to encode syntactic and semantic relationships between language elements. The information captured by these embeddings can be exploited for bilingual translation by learning a transformation matrix that allows matching relative positions across two monolingual vector spaces. This method aims to identify high-quality candidates for word and phrase translation more cost-effectively from unlabeled data. This paper expands the scope of previous attempts of bilingual translation to four languages (English, German, Spanish, and French). It shows how to process the source data, train a neural network to learn the high-dimensional embeddings for individual languages and expands the framework for testing their quality beyond the English language. Furthermore, it shows how to learn bilingual transformation matrices and obtain candidates for word and phrase translation, and assess their quality.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)