Analysis of Approximate Message Passing with a Class of Non-Separable Denoisers (1705.03126v2)
Abstract: Approximate message passing (AMP) is a class of efficient algorithms for solving high-dimensional linear regression tasks where one wishes to recover an unknown signal \beta_0 from noisy, linear measurements y = A \beta_0 + w. When applying a separable denoiser at each iteration, the performance of AMP (for example, the mean squared error of its estimates) can be accurately tracked by a simple, scalar iteration referred to as state evolution. Although separable denoisers are sufficient if the unknown signal has independent and identically distributed entries, in many real-world applications, like image or audio signal reconstruction, the unknown signal contains dependencies between entries. In these cases, a coordinate-wise independence structure is not a good approximation to the true prior of the unknown signal. In this paper we assume the unknown signal has dependent entries, and using a class of non-separable sliding-window denoisers, we prove that a new form of state evolution still accurately predicts AMP performance. This is an early step in understanding the role of non-separable denoisers within AMP, and will lead to a characterization of more general denoisers in problems including compressive image reconstruction.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.