Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How to Balance Privacy and Money through Pricing Mechanism in Personal Data Market (1705.02982v2)

Published 8 May 2017 in cs.CY, cs.DB, and cs.GT

Abstract: A personal data market is a platform including three participants: data owners (individuals), data buyers and market maker. Data owners who provide personal data are compensated according to their privacy loss. Data buyers can submit a query and pay for the result according to their desired accuracy. Market maker coordinates between data owner and buyer. This framework has been previously studied based on differential privacy. However, the previous study assumes data owners can accept any level of privacy loss and data buyers can conduct the transaction without regard to the financial budget. In this paper, we propose a practical personal data trading framework that is able to strike a balance between money and privacy. In order to gain insights on user preferences, we first conducted an online survey on human attitude to- ward privacy and interest in personal data trading. Second, we identify the 5 key principles of personal data market, which is important for designing a reasonable trading frame- work and pricing mechanism. Third, we propose a reason- able trading framework for personal data which provides an overview of how the data is traded. Fourth, we propose a balanced pricing mechanism which computes the query price for data buyers and compensation for data owners (whose data are utilized) as a function of their privacy loss. The main goal is to ensure a fair trading for both parties. Finally, we will conduct an experiment to evaluate the output of our proposed pricing mechanism in comparison with other previously proposed mechanism.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube