Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Face Recognition Machine Vision System Using Eigenfaces (1705.02782v1)

Published 8 May 2017 in cs.CV

Abstract: Face Recognition is a common problem in Machine Learning. This technology has already been widely used in our lives. For example, Facebook can automatically tag people's faces in images, and also some mobile devices use face recognition to protect private security. Face images comes with different background, variant illumination, different facial expression and occlusion. There are a large number of approaches for the face recognition. Different approaches for face recognition have been experimented with specific databases which consist of single type, format and composition of image. Doing so, these approaches don't suit with different face databases. One of the basic face recognition techniques is eigenface which is quite simple, efficient, and yields generally good results in controlled circumstances. So, this paper presents an experimental performance comparison of face recognition using Principal Component Analysis (PCA) and Normalized Principal Component Analysis (NPCA). The experiments are carried out on the ORL (ATT) and Indian face database (IFD) which contain variability in expression, pose, and facial details. The results obtained for the two methods have been compared by varying the number of training images. MATLAB is used for implementing algorithms also.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.