Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Spherical Wards clustering and generalized Voronoi diagrams (1705.02232v1)

Published 4 May 2017 in cs.LG

Abstract: Gaussian mixture model is very useful in many practical problems. Nevertheless, it cannot be directly generalized to non Euclidean spaces. To overcome this problem we present a spherical Gaussian-based clustering approach for partitioning data sets with respect to arbitrary dissimilarity measure. The proposed method is a combination of spherical Cross-Entropy Clustering with a generalized Wards approach. The algorithm finds the optimal number of clusters by automatically removing groups which carry no information. Moreover, it is scale invariant and allows for forming of spherically-shaped clusters of arbitrary sizes. In order to graphically represent and interpret the results the notion of Voronoi diagram was generalized to non Euclidean spaces and applied for introduced clustering method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.