Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Online Covering with Sum of $\ell_q$-Norm Objectives (1705.02194v2)

Published 5 May 2017 in cs.DS

Abstract: We consider fractional online covering problems with $\ell_q$-norm objectives. The problem of interest is of the form $\min{ f(x) \,:\, Ax\ge 1, x\ge 0}$ where $f(x)=\sum_{e} c_e |x(S_e)|{q_e} $ is the weighted sum of $\ell_q$-norms and $A$ is a non-negative matrix. The rows of $A$ (i.e. covering constraints) arrive online over time. We provide an online $O(\log d+\log \rho)$-competitive algorithm where $\rho = \frac{\max a{ij}}{\min a_{ij}}$ and $d$ is the maximum of the row sparsity of $A$ and $\max |S_e|$. This is based on the online primal-dual framework where we use the dual of the above convex program. Our result expands the class of convex objectives that admit good online algorithms: prior results required a monotonicity condition on the objective $f$ which is not satisfied here. This result is nearly tight even for the linear special case. As direct applications we obtain (i) improved online algorithms for non-uniform buy-at-bulk network design and (ii) the first online algorithm for throughput maximization under $\ell_p$-norm edge capacities.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.