Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exponential scaling of neural algorithms - a future beyond Moore's Law? (1705.02042v2)

Published 4 May 2017 in cs.NE and q-bio.NC

Abstract: Although the brain has long been considered a potential inspiration for future computing, Moore's Law - the scaling property that has seen revolutions in technologies ranging from supercomputers to smart phones - has largely been driven by advances in materials science. As the ability to miniaturize transistors is coming to an end, there is increasing attention on new approaches to computation, including renewed enthusiasm around the potential of neural computation. This paper describes how recent advances in neurotechnologies, many of which have been aided by computing's rapid progression over recent decades, are now reigniting this opportunity to bring neural computation insights into broader computing applications. As we understand more about the brain, our ability to motivate new computing paradigms with continue to progress. These new approaches to computing, which we are already seeing in techniques such as deep learning and neuromorphic hardware, will themselves improve our ability to learn about the brain and accordingly can be projected to give rise to even further insights. This paper will describe how this positive feedback has the potential to change the complexion of how computing sciences and neurosciences interact, and suggests that the next form of exponential scaling in computing may emerge from our progressive understanding of the brain.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)