Papers
Topics
Authors
Recent
2000 character limit reached

Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection on Twitter (1705.01306v1)

Published 3 May 2017 in cs.CL and stat.ML

Abstract: This paper describes the Amobee sentiment analysis system, adapted to compete in SemEval 2017 task 4. The system consists of two parts: a supervised training of RNN models based on a Twitter sentiment treebank, and the use of feedforward NN, Naive Bayes and logistic regression classifiers to produce predictions for the different sub-tasks. The algorithm reached the 3rd place on the 5-label classification task (sub-task C).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.