Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning to segment with image-level supervision (1705.01262v2)

Published 3 May 2017 in cs.CV

Abstract: Deep convolutional networks have achieved the state-of-the-art for semantic image segmentation tasks. However, training these networks requires access to densely labeled images, which are known to be very expensive to obtain. On the other hand, the web provides an almost unlimited source of images annotated at the image level. How can one utilize this much larger weakly annotated set for tasks that require dense labeling? Prior work often relied on localization cues, such as saliency maps, objectness priors, bounding boxes etc., to address this challenging problem. In this paper, we propose a model that generates auxiliary labels for each image, while simultaneously forcing the output of the CNN to satisfy the mean-field constraints imposed by a conditional random field. We show that one can enforce the CRF constraints by forcing the distribution at each pixel to be close to the distribution of its neighbors. This is in stark contrast with methods that compute a recursive expansion of the mean-field distribution using a recurrent architecture and train the resultant distribution. Instead, the proposed model adds an extra loss term to the output of the CNN, and hence, is faster than recursive implementations. We achieve the state-of-the-art for weakly supervised semantic image segmentation on VOC 2012 dataset, assuming no manually labeled pixel level information is available. Furthermore, the incorporation of conditional random fields in CNN incurs little extra time during training.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.