Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Investigation of Different Skeleton Features for CNN-based 3D Action Recognition (1705.00835v1)

Published 2 May 2017 in cs.CV

Abstract: Deep learning techniques are being used in skeleton based action recognition tasks and outstanding performance has been reported. Compared with RNN based methods which tend to overemphasize temporal information, CNN-based approaches can jointly capture spatio-temporal information from texture color images encoded from skeleton sequences. There are several skeleton-based features that have proven effective in RNN-based and handcrafted-feature-based methods. However, it remains unknown whether they are suitable for CNN-based approaches. This paper proposes to encode five spatial skeleton features into images with different encoding methods. In addition, the performance implication of different joints used for feature extraction is studied. The proposed method achieved state-of-the-art performance on NTU RGB+D dataset for 3D human action analysis. An accuracy of 75.32\% was achieved in Large Scale 3D Human Activity Analysis Challenge in Depth Videos.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.