Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-view Unsupervised Feature Selection by Cross-diffused Matrix Alignment (1705.00825v1)

Published 2 May 2017 in cs.LG

Abstract: Multi-view high-dimensional data become increasingly popular in the big data era. Feature selection is a useful technique for alleviating the curse of dimensionality in multi-view learning. In this paper, we study unsupervised feature selection for multi-view data, as class labels are usually expensive to obtain. Traditional feature selection methods are mostly designed for single-view data and cannot fully exploit the rich information from multi-view data. Existing multi-view feature selection methods are usually based on noisy cluster labels which might not preserve sufficient information from multi-view data. To better utilize multi-view information, we propose a method, CDMA-FS, to select features for each view by performing alignment on a cross diffused matrix. We formulate it as a constrained optimization problem and solve it using Quasi-Newton based method. Experiments results on four real-world datasets show that the proposed method is more effective than the state-of-the-art methods in multi-view setting.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.