Papers
Topics
Authors
Recent
2000 character limit reached

Labelled network subgraphs reveal stylistic subtleties in written texts (1705.00545v3)

Published 1 May 2017 in cs.CL and physics.data-an

Abstract: The vast amount of data and increase of computational capacity have allowed the analysis of texts from several perspectives, including the representation of texts as complex networks. Nodes of the network represent the words, and edges represent some relationship, usually word co-occurrence. Even though networked representations have been applied to study some tasks, such approaches are not usually combined with traditional models relying upon statistical paradigms. Because networked models are able to grasp textual patterns, we devised a hybrid classifier, called labelled subgraphs, that combines the frequency of common words with small structures found in the topology of the network, known as motifs. Our approach is illustrated in two contexts, authorship attribution and translationese identification. In the former, a set of novels written by different authors is analyzed. To identify translationese, texts from the Canadian Hansard and the European parliament were classified as to original and translated instances. Our results suggest that labelled subgraphs are able to represent texts and it should be further explored in other tasks, such as the analysis of text complexity, language proficiency, and machine translation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.