Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Type Checking for Path Polymorphism (1704.09026v1)

Published 28 Apr 2017 in cs.LO and cs.PL

Abstract: A type system combining type application, constants as types, union types (associative, commutative and idempotent) and recursive types has recently been proposed for statically typing path polymorphism, the ability to define functions that can operate uniformly over recursively specified applicative data structures. A typical pattern such functions resort to is $x\,y$ which decomposes a compound, in other words any applicative tree structure, into its parts. We study type-checking for this type system in two stages. First we propose algorithms for checking type equivalence and subtyping based on coinductive characterizations of those relations. We then formulate a syntax-directed presentation and prove its equivalence with the original one. This yields a type-checking algorithm which unfortunately has exponential time complexity in the worst case. A second algorithm is then proposed, based on automata techniques, which yields a polynomial-time type-checking algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.