Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Audio-based performance evaluation of squash players (1704.08765v1)

Published 20 Apr 2017 in eess.AS and cs.SD

Abstract: In competitive sports it is often very hard to quantify the performance. A player to score or overtake may depend on only millesimal of seconds or millimeters. In racquet sports like tennis, table tennis and squash many events will occur in a short time duration, whose recording and analysis can help reveal the differences in performance. In this paper we show that it is possible to architect a framework that utilizes the characteristic sound patterns to precisely classify the types of and localize the positions of these events. From these basic information the shot types and the ball speed along the trajectories can be estimated. Comparing these estimates with the optimal speed and target the precision of the shot can be defined. The detailed shot statistics and precision information significantly enriches and improves data available today. Feeding them back to the players and the coaches facilitates to describe playing performance objectively and to improve strategy skills. The framework is implemented, its hardware and software components are installed and tested in a squash court.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.