Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Improved Bound for Minimizing the Total Weighted Completion Time of Coflows in Datacenters (1704.08357v1)

Published 26 Apr 2017 in cs.DS and cs.DM

Abstract: In data-parallel computing frameworks, intermediate parallel data is often produced at various stages which needs to be transferred among servers in the datacenter network (e.g. the shuffle phase in MapReduce). A stage often cannot start or be completed unless all the required data pieces from the preceding stage are received. \emph{Coflow} is a recently proposed networking abstraction to capture such communication patterns. We consider the problem of efficiently scheduling coflows with release dates in a shared datacenter network so as to minimize the total weighted completion time of coflows. Several heuristics have been proposed recently to address this problem, as well as a few polynomial-time approximation algorithms with provable performance guarantees. Our main result in this paper is a polynomial-time deterministic algorithm that improves the prior known results. Specifically, we propose a deterministic algorithm with approximation ratio of $5$, which improves the prior best known ratio of $12$. For the special case when all coflows are released at time zero, our deterministic algorithm obtains approximation ratio of $4$ which improves the prior best known ratio of $8$. The key ingredient of our approach is an improved linear program formulation for sorting the coflows followed by a simple list scheduling policy. Extensive simulation results, using both synthetic and real traffic traces, are presented that verify the performance of our algorithm and show improvement over the prior approaches.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.