Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Relative Error Tensor Low Rank Approximation (1704.08246v2)

Published 26 Apr 2017 in cs.DS, cs.CC, and cs.LG

Abstract: We consider relative error low rank approximation of $tensors$ with respect to the Frobenius norm: given an order-$q$ tensor $A \in \mathbb{R}{\prod_{i=1}q n_i}$, output a rank-$k$ tensor $B$ for which $|A-B|F2 \leq (1+\epsilon)$OPT, where OPT $= \inf{\textrm{rank-}k~A'} |A-A'|_F2$. Despite the success on obtaining relative error low rank approximations for matrices, no such results were known for tensors. One structural issue is that there may be no rank-$k$ tensor $A_k$ achieving the above infinum. Another, computational issue, is that an efficient relative error low rank approximation algorithm for tensors would allow one to compute the rank of a tensor, which is NP-hard. We bypass these issues via (1) bicriteria and (2) parameterized complexity solutions: (1) We give an algorithm which outputs a rank $k' = O((k/\epsilon){q-1})$ tensor $B$ for which $|A-B|_F2 \leq (1+\epsilon)$OPT in $nnz(A) + n \cdot \textrm{poly}(k/\epsilon)$ time in the real RAM model. Here $nnz(A)$ is the number of non-zero entries in $A$. (2) We give an algorithm for any $\delta >0$ which outputs a rank $k$ tensor $B$ for which $|A-B|_F2 \leq (1+\epsilon)$OPT and runs in $ ( nnz(A) + n \cdot \textrm{poly}(k/\epsilon) + \exp(k2/\epsilon) ) \cdot n\delta$ time in the unit cost RAM model. For outputting a rank-$k$ tensor, or even a bicriteria solution with rank-$Ck$ for a certain constant $C > 1$, we show a $2{\Omega(k{1-o(1)})}$ time lower bound under the Exponential Time Hypothesis. Our results give the first relative error low rank approximations for tensors for a large number of robust error measures for which nothing was known, as well as column row and tube subset selection. We also obtain new results for matrices, such as $nnz(A)$-time CUR decompositions, improving previous $nnz(A)\log n$-time algorithms, which may be of independent interest.

Citations (119)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.