Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

C-VQA: A Compositional Split of the Visual Question Answering (VQA) v1.0 Dataset (1704.08243v1)

Published 26 Apr 2017 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: Visual Question Answering (VQA) has received a lot of attention over the past couple of years. A number of deep learning models have been proposed for this task. However, it has been shown that these models are heavily driven by superficial correlations in the training data and lack compositionality -- the ability to answer questions about unseen compositions of seen concepts. This compositionality is desirable and central to intelligence. In this paper, we propose a new setting for Visual Question Answering where the test question-answer pairs are compositionally novel compared to training question-answer pairs. To facilitate developing models under this setting, we present a new compositional split of the VQA v1.0 dataset, which we call Compositional VQA (C-VQA). We analyze the distribution of questions and answers in the C-VQA splits. Finally, we evaluate several existing VQA models under this new setting and show that the performances of these models degrade by a significant amount compared to the original VQA setting.

Citations (78)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.