Exploring Application Performance on Emerging Hybrid-Memory Supercomputers (1704.08239v1)
Abstract: Next-generation supercomputers will feature more hierarchical and heterogeneous memory systems with different memory technologies working side-by-side. A critical question is whether at large scale existing HPC applications and emerging data-analytics workloads will have performance improvement or degradation on these systems. We propose a systematic and fair methodology to identify the trend of application performance on emerging hybrid-memory systems. We model the memory system of next-generation supercomputers as a combination of "fast" and "slow" memories. We then analyze performance and dynamic execution characteristics of a variety of workloads, from traditional scientific applications to emerging data analytics to compare traditional and hybrid-memory systems. Our results show that data analytics applications can clearly benefit from the new system design, especially at large scale. Moreover, hybrid-memory systems do not penalize traditional scientific applications, which may also show performance improvement.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.