Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Exploring Application Performance on Emerging Hybrid-Memory Supercomputers (1704.08239v1)

Published 26 Apr 2017 in cs.DC

Abstract: Next-generation supercomputers will feature more hierarchical and heterogeneous memory systems with different memory technologies working side-by-side. A critical question is whether at large scale existing HPC applications and emerging data-analytics workloads will have performance improvement or degradation on these systems. We propose a systematic and fair methodology to identify the trend of application performance on emerging hybrid-memory systems. We model the memory system of next-generation supercomputers as a combination of "fast" and "slow" memories. We then analyze performance and dynamic execution characteristics of a variety of workloads, from traditional scientific applications to emerging data analytics to compare traditional and hybrid-memory systems. Our results show that data analytics applications can clearly benefit from the new system design, especially at large scale. Moreover, hybrid-memory systems do not penalize traditional scientific applications, which may also show performance improvement.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.