Topically Driven Neural Language Model (1704.08012v2)
Abstract: LLMs are typically applied at the sentence level, without access to the broader document context. We present a neural LLM that incorporates document context in the form of a topic model-like architecture, thus providing a succinct representation of the broader document context outside of the current sentence. Experiments over a range of datasets demonstrate that our model outperforms a pure sentence-based model in terms of LLM perplexity, and leads to topics that are potentially more coherent than those produced by a standard LDA topic model. Our model also has the ability to generate related sentences for a topic, providing another way to interpret topics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.