Papers
Topics
Authors
Recent
2000 character limit reached

Separability by Piecewise Testable Languages is PTime-Complete (1704.07856v2)

Published 25 Apr 2017 in cs.FL

Abstract: Piecewise testable languages form the first level of the Straubing-Th\'erien hierarchy. The membership problem for this level is decidable and testing if the language of a DFA is piecewise testable is NL-complete. The question has not yet been addressed for NFAs. We fill in this gap by showing that it is PSpace-complete. The main result is then the lower-bound complexity of separability of regular languages by piecewise testable languages. Two regular languages are separable by a piecewise testable language if the piecewise testable language includes one of them and is disjoint from the other. For languages represented by NFAs, separability by piecewise testable languages is known to be decidable in PTime. We show that it is PTime-hard and that it remains PTime-hard even for minimal DFAs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.