Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Single-Pass PCA of Large High-Dimensional Data (1704.07669v1)

Published 25 Apr 2017 in cs.DS, cs.LG, and math.NA

Abstract: Principal component analysis (PCA) is a fundamental dimension reduction tool in statistics and machine learning. For large and high-dimensional data, computing the PCA (i.e., the singular vectors corresponding to a number of dominant singular values of the data matrix) becomes a challenging task. In this work, a single-pass randomized algorithm is proposed to compute PCA with only one pass over the data. It is suitable for processing extremely large and high-dimensional data stored in slow memory (hard disk) or the data generated in a streaming fashion. Experiments with synthetic and real data validate the algorithm's accuracy, which has orders of magnitude smaller error than an existing single-pass algorithm. For a set of high-dimensional data stored as a 150 GB file, the proposed algorithm is able to compute the first 50 principal components in just 24 minutes on a typical 24-core computer, with less than 1 GB memory cost.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.