Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A hybridizable discontinuous Galerkin method for the Navier--Stokes equations with pointwise divergence-free velocity field (1704.07569v2)

Published 25 Apr 2017 in math.NA, cs.CE, and physics.flu-dyn

Abstract: We introduce a hybridizable discontinuous Galerkin method for the incompressible Navier--Stokes equations for which the approximate velocity field is pointwise divergence-free. The method builds on the method presented by Labeur and Wells [SIAM J. Sci. Comput., vol. 34 (2012), pp. A889--A913]. We show that with modifications of the function spaces in the method of Labeur and Wells it is possible to formulate a simple method with pointwise divergence-free velocity fields which is momentum conserving, energy stable, and pressure-robust. Theoretical results are supported by two- and three-dimensional numerical examples and for different orders of polynomial approximation.

Citations (91)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.