Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Body Joint guided 3D Deep Convolutional Descriptors for Action Recognition (1704.07160v2)

Published 24 Apr 2017 in cs.CV

Abstract: Three dimensional convolutional neural networks (3D CNNs) have been established as a powerful tool to simultaneously learn features from both spatial and temporal dimensions, which is suitable to be applied to video-based action recognition. In this work, we propose not to directly use the activations of fully-connected layers of a 3D CNN as the video feature, but to use selective convolutional layer activations to form a discriminative descriptor for video. It pools the feature on the convolutional layers under the guidance of body joint positions. Two schemes of mapping body joints into convolutional feature maps for pooling are discussed. The body joint positions can be obtained from any off-the-shelf skeleton estimation algorithm. The helpfulness of the body joint guided feature pooling with inaccurate skeleton estimation is systematically evaluated. To make it end-to-end and do not rely on any sophisticated body joint detection algorithm, we further propose a two-stream bilinear model which can learn the guidance from the body joints and capture the spatio-temporal features simultaneously. In this model, the body joint guided feature pooling is conveniently formulated as a bilinear product operation. Experimental results on three real-world datasets demonstrate the effectiveness of body joint guided pooling which achieves promising performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Congqi Cao (17 papers)
  2. Yifan Zhang (245 papers)
  3. Chunjie Zhang (15 papers)
  4. Hanqing Lu (34 papers)
Citations (65)

Summary

We haven't generated a summary for this paper yet.