Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploiting Feature Confidence for Forward Motion Estimation (1704.07145v3)

Published 24 Apr 2017 in cs.RO

Abstract: Visual-Inertial Odometry (VIO) utilizes an Inertial Measurement Unit (IMU) to overcome the limitations of Visual Odometry (VO). However, the VIO for vehicles in large-scale outdoor environments still has some difficulties in estimating forward motion with distant features. To solve these difficulties, we propose a robust VIO method based on the analysis of feature confidence in forward motion estimation using an IMU. We first formulate the VIO problem by using effective trifocal tensor geometry. Then, we infer the feature confidence by using the motion information obtained from an IMU and incorporate the confidence into the Bayesian estimation framework. Experimental results on the public KITTI dataset show that the proposed VIO outperforms the baseline VIO, and it also demonstrates the effectiveness of the proposed feature confidence analysis and confidence-incorporated egomotion estimation framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.