Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Multitask Learning for Semantic Dependency Parsing (1704.06855v2)

Published 22 Apr 2017 in cs.CL

Abstract: We present a deep neural architecture that parses sentences into three semantic dependency graph formalisms. By using efficient, nearly arc-factored inference and a bidirectional-LSTM composed with a multi-layer perceptron, our base system is able to significantly improve the state of the art for semantic dependency parsing, without using hand-engineered features or syntax. We then explore two multitask learning approaches---one that shares parameters across formalisms, and one that uses higher-order structures to predict the graphs jointly. We find that both approaches improve performance across formalisms on average, achieving a new state of the art. Our code is open-source and available at https://github.com/Noahs-ARK/NeurboParser.

Citations (144)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.