Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning based Isolated Arabic Scene Character Recognition (1704.06821v1)

Published 22 Apr 2017 in cs.CV

Abstract: The technological advancement and sophistication in cameras and gadgets prompt researchers to have focus on image analysis and text understanding. The deep learning techniques demonstrated well to assess the potential for classifying text from natural scene images as reported in recent years. There are variety of deep learning approaches that prospects the detection and recognition of text, effectively from images. In this work, we presented Arabic scene text recognition using Convolutional Neural Networks (ConvNets) as a deep learning classifier. As the scene text data is slanted and skewed, thus to deal with maximum variations, we employ five orientations with respect to single occurrence of a character. The training is formulated by keeping filter size 3 x 3 and 5 x 5 with stride value as 1 and 2. During text classification phase, we trained network with distinct learning rates. Our approach reported encouraging results on recognition of Arabic characters from segmented Arabic scene images.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.